Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 50135
1.  
i

Тре­уголь­ник ABC  — рав­но­бед­рен­ный с ос­но­ва­ни­ем AB. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC тре­уголь­ни­ка ABC.

1) 62°
2) 68°
3) 34°
4) 64°
5) 28°
2.  
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:

1) DB
2) DC
3) DO1
4) OO1
5) AD
3.  
i

Среди точек B левая круг­лая скоб­ка 13;0 пра­вая круг­лая скоб­ка , T левая круг­лая скоб­ка минус 7;13 пра­вая круг­лая скоб­ка , C левая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та ; ко­рень из: на­ча­ло ар­гу­мен­та: 13 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , O левая круг­лая скоб­ка 0;0 пра­вая круг­лая скоб­ка , L левая круг­лая скоб­ка 0; минус 13 пра­вая круг­лая скоб­ка вы­бе­ри­те ту, ко­то­рая при­над­ле­жит гра­фи­ку функ­ции, изоб­ражённому на ри­сун­ке:

1) B
2) T
3) C
4) O
5) L
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 2, дроб­ная часть: чис­ли­тель: 7, зна­ме­на­тель: 12 минус целая часть: 2, дроб­ная часть: чис­ли­тель: 17, зна­ме­на­тель: 36 пра­вая круг­лая скоб­ка умно­жить на 2,7 минус 0,4.

1) 0,1
2) -0,7
3) -0,1
4) 0,3
5) -1,5
5.  
i

Если 9x минус 24=0, то 18x минус 31 равно:

1) 13
2) −17
3) 17
4) 21
5) −19
6.  
i

На ри­сун­ке изоб­ра­же­ны раз­вер­ну­тый угол AOM и лучи OB и OC. Из­вест­но, что \angle AOC=107 гра­ду­сов, \angle BOM=113 гра­ду­сов. Най­ди­те ве­ли­чи­ну угла BOC.

1) 73 гра­ду­сов
2) 67 гра­ду­сов
3) 17 гра­ду­сов
4) 40 гра­ду­сов
5) 23 гра­ду­сов
7.  
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant5.

1) x при­над­ле­жит левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка
3) x при­над­ле­жит левая квад­рат­ная скоб­ка минус 5;5 пра­вая квад­рат­ная скоб­ка
4) x при­над­ле­жит левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 5 пра­вая квад­рат­ная скоб­ка \cup левая квад­рат­ная скоб­ка 5; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5) x_1= минус 5, x_2=5
8.  
i

Даны числа: 5100; 0,0051; 5,1 · 10−4; 51 · 103; 0,51 · 105. Ука­жи­те число, за­пи­сан­ное в стан­дарт­ном виде.

1) 5100
2) 0,0051
3) 5,1 · 10−4
4) 51 · 103
5) 0,51 · 105
9.  
i

На ко­ор­ди­нат­ной плос­ко­сти даны точка А, рас­по­ло­жен­ная в узле сетки, и пря­мая l (см. рис.). Опре­де­ли­те ко­ор­ди­на­ты точки, сим­мет­рич­ной точке А от­но­си­тель­но пря­мой l.

1) (1; 1)
2) (-1; 0)
3) (-2; 1)
4) (0; 2)
5) (-2; 4)
10.  
i

Зна­че­ние вы­ра­же­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: целая часть: 1, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 32 конец ар­гу­мен­та : ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та равно:

1)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 2 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби
3) 2
4)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 3 ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 33 конец ар­гу­мен­та конец дроби
5)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 33 конец дроби
11.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 5 ко­рень из 5 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 5 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 12 ко­рень из 5 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 5 конец дроби

1)  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 5 конец дроби ;
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та ;
3) 16;
4) 26;
5)  дробь: чис­ли­тель: 5, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 5 конец дроби .
12.  
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром пред­став­лен эскиз гра­фи­ка функ­ции y  =  1 − (x + 3)2.

1)

2)

3)

4)

5)

1) 1
2) 2
3) 3
4) 4
5) 5
13.  
i

Па­рал­лель­но сто­ро­не тре­уголь­ни­ка, рав­ной 5, про­ве­де­на пря­мая. Длина от­рез­ка этой пря­мой, за­клю­чен­но­го между сто­ро­на­ми тре­уголь­ни­ка, равна 2. Най­ди­те от­но­ше­ние пло­ща­ди по­лу­чен­ной тра­пе­ции к пло­ща­ди ис­ход­но­го тре­уголь­ни­ка.

1)  дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби
2) 0,6
3)  дробь: чис­ли­тель: 21, зна­ме­на­тель: 25 конец дроби
4)  дробь: чис­ли­тель: 4, зна­ме­на­тель: 25 конец дроби
5)  дробь: чис­ли­тель: 3, зна­ме­на­тель: 25 конец дроби
14.  
i

Из­вест­но, что наи­мень­шее зна­че­ние функ­ции, за­дан­ной фор­му­лой y  =  x2 + 8x + c, равно −3. Тогда зна­че­ние c равно:

1) 13
2) 16
3)  минус 51
4)  минус 19
5) 19
15.  
i

ABCDA1B1C1D1  — куб. Точки M и N  — се­ре­ди­ны ребер AD и DC со­от­вет­ствен­но, K при­над­ле­жит A_1D_1, KA_1:KD_1=1:3 (см. рис.). Се­че­ни­ем куба плос­ко­стью, про­хо­дя­щей через точки M, N и K, яв­ля­ет­ся:

1) вось­ми­уголь­ник
2) тре­уголь­ник
3) че­ты­рех­уголь­ник
4) пя­ти­уголь­ник
5) ше­сти­уголь­ник
16.  
i

Рас­по­ло­жи­те числа 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 31 в сте­пе­ни 6 в по­ряд­ке воз­рас­та­ния.

1) 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 31 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
2) 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 31 в сте­пе­ни 6
3) 31 в сте­пе­ни 6 , 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
4) 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка , 31 в сте­пе­ни левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка , 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка
5) 31 в сте­пе­ни 6 , 8 в сте­пе­ни левая круг­лая скоб­ка 10 пра­вая круг­лая скоб­ка , 3 в сте­пе­ни левая круг­лая скоб­ка 18 пра­вая круг­лая скоб­ка
17.  
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но оси Oy и про­хо­дит через точку A левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; 6 пра­вая круг­лая скоб­ка . Зна­че­ние вы­ра­же­ния k + b равно:

1)  минус целая часть: 5, дроб­ная часть: чис­ли­тель: 2, зна­ме­на­тель: 3
2)  целая часть: 6, дроб­ная часть: чис­ли­тель: 1, зна­ме­на­тель: 3
3) 6
4) 2
5) 18
18.  
i

Ука­жи­те (в гра­ду­сах) наи­мень­ший по­ло­жи­тель­ный ко­рень урав­не­ния  ко­си­нус левая круг­лая скоб­ка 6x минус 72 гра­ду­сов пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 2 конец дроби .

1) 5°
2) 102°
3) 17°
4) 42°
5) 7°
19.  
i

Витя купил в ма­га­зи­не не­ко­то­рое ко­ли­че­ство тет­ра­дей, за­пла­тив за них 24 ты­ся­чи руб­лей. Затем он об­на­ру­жил, что в дру­гом ма­га­зи­не тет­радь стоит на 1 ты­ся­чу руб­лей мень­ше, по­это­му, за­пла­тив такую же сумму, он мог бы ку­пить на 2 тет­ра­ди боль­ше. Сколь­ко тет­ра­дей купил Витя?

20.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния 2x умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 7x плюс 18 конец ар­гу­мен­та =x в квад­ра­те плюс 7x плюс 18.

21.  
i

Из­вест­но, что при a, рав­ном −2 и 4, зна­че­ние вы­ра­же­ния 4a в кубе плюс 3a в квад­ра­те минус ab плюс c равно нулю. Най­ди­те зна­че­ние вы­ра­же­ния b + с.

22.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 54 пра­вая круг­лая скоб­ка мень­ше или равно 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка .

23.  
i

Най­ди­те сумму всех на­ту­раль­ных чисел a, для ко­то­рых вы­пол­ня­ет­ся ра­вен­ство НОД левая круг­лая скоб­ка 18, a пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: a, зна­ме­на­тель: 2 конец дроби .

24.  
i

Пло­щадь пря­мо­уголь­ни­ка ABCD равна 20. Точки M, N, P, Q  — се­ре­ди­ны его сто­рон. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка между пря­мы­ми AN, BP, CQ, DM.

25.  
i

Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти пра­виль­ной тре­уголь­ной пи­ра­ми­ды, если длина бис­сек­три­сы ее ос­но­ва­ния равна 4 ко­рень из 3 и плос­кий угол при вер­ши­не 2 арк­тан­генс дробь: чис­ли­тель: 4, зна­ме­на­тель: 5 конец дроби .

26.  
i

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 15 конец дроби пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 ло­га­рифм по ос­но­ва­нию 9 левая круг­лая скоб­ка x плюс 15 пра­вая круг­лая скоб­ка боль­ше 0.

27.  
i

В ариф­ме­ти­че­ской про­грес­сии 130 чле­нов, их сумма равна 130, а сумма чле­нов с чет­ны­ми но­ме­ра­ми на 130 боль­ше суммы чле­нов с не­чет­ны­ми но­ме­ра­ми. Най­ди­те сотый член этой про­грес­сии.

28.  
i

Най­ди­те про­из­ве­де­ние наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства |15 минус 2x минус x в квад­ра­те | плюс 4 мень­ше 4 умно­жить на |3 минус x| плюс |x плюс 5|.

29.  
i

Из двух рас­тво­ров с раз­лич­ным про­цент­ным со­дер­жа­ни­ем спир­та мас­сой 100 г и 900 г от­ли­ли по оди­на­ко­во­му ко­ли­че­ству рас­тво­ра. Каж­дый из от­ли­тых рас­тво­ров до­ли­ли в оста­ток дру­го­го рас­тво­ра, после чего про­цент­ное со­дер­жа­ние спир­та в обоих рас­тво­рах стало оди­на­ко­вым. Най­ди­те, сколь­ко рас­тво­ра (в грам­мах) было от­ли­то из каж­до­го рас­тво­ра.

30.  
i

Трое ра­бо­чих (не все оди­на­ко­вой ква­ли­фи­ка­ции) вы­пол­ни­ли не­ко­то­рую ра­бо­ту, ра­бо­тая по­оче­ред­но. Сна­ча­ла пер­вый из них про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. Затем вто­рой про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. И, на­ко­нец, тре­тий про­ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 12 конец дроби часть вре­ме­ни, не­об­хо­ди­мо­го двум дру­гим для вы­пол­не­ния всей ра­бо­ты. Во сколь­ко раз быст­рее ра­бо­та была бы вы­пол­не­на, если бы трое ра­бо­чих ра­бо­та­ли од­но­вре­мен­но? В ответ за­пи­ши­те най­ден­ное число, умно­жен­ное на 4.

31.  
i

От­ре­зок BD яв­ля­ет­ся бис­сек­три­сой тре­уголь­ни­ка АВС, в ко­то­ром  дробь: чис­ли­тель: BC, зна­ме­на­тель: AB конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BC, зна­ме­на­тель: AC конец дроби = дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби . По от­рез­ку из точек В и D од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми на­ча­ли дви­же­ние два тела, ко­то­рые встре­ти­лись в точке пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС и про­дол­жи­ли дви­же­ние, не меняя на­прав­ле­ния и ско­ро­сти. Пер­вое тело до­стиг­ло точки D на 1 ми­ну­ту 14 се­кунд рань­ше, чем вто­рое до­стиг­ло точки В. За сколь­ко се­кунд вто­рое тело про­шло весь путь от точки D до точки В?

32.  
i

Рав­но­бед­рен­ная тра­пе­ция с ос­но­ва­ни­я­ми дли­ной 7 и 3 и ост­рым углом 60° вра­ща­ет­ся во­круг пря­мой, со­дер­жа­щей ее бо­ко­вую сто­ро­ну. Най­ди­те объем тела вра­ще­ния V и в ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: V, зна­ме­на­тель: Пи конец дроби .